Journal articles

Fischione products play an instrumental role in cutting-edge electron microscopy research. Below you will find journal articles in which Fischione products were used to achieve the published results.

 
Keywords Title/Link Citation

Model 110 Automatic Twin-Jet Electropolisher

EBSD, creep voids, 3D, hydrogen reformer tubes 3D analysis of creep voids in hydrogen reformer tubes Wahab, A. A., & Kral, M. V. (2005). 3D analysis of creep voids in hydrogen reformer tubes. Materials Science and Engineering: A, 412, 222–229.

Model 1020 Plasma Cleaner

plasma cleaning, EELS, EDS Plasma cleaning and its applications for electron microscopy Isabell, T. C., Fischione, P. E., O'Keefe, C., Guruz, M. U., & Dravid, V. P. (1999). Plasma cleaning and Its applications for electron microscopy. Microscopy and Microanalysis, 5(2), 126-135.
plasma cleaning, carbonaceous contamination, shield, TEM, carbon hydroxide, holey carbon films, EELS, HREM Plasma cleaning of carbonaceous samples using a shield Willems, B., Hamon, A., Schryvers, D., Robins, A., Matesa, J., & Fischione, P. (2003). Plasma cleaning of carbonaceous samples using a shield. Microscopy and Microanalysis, 9, 164-165.
semiconductor, plasma cleaning, carbonaceous contamination, TEM, SEM, SEM holders Applications of plasma cleaning for electron microscopy of semiconducting materials Isabell, T. C., & Fischione, P. E. (1998). Applications of Plasma Cleaning for Electron Microscopy of Semiconducting Materials. MRS Proceedings.
plasma cleaning, cryo-EM, blotting, TEM, holey carbon films Improving automation for cryo-EM specimen preparation Quispe, J., Banez, R., Carragher, B., & Potter, C. S. (2004). Improving Automation for Cryo-EM Specimen Preparation. Microscopy and Microanalysis
plasma cleaning, carbon contamination, STEM Quantification of carbon contamination under electron beam irradiation in a scanning transmission electron microscope and its suppression by plasma cleaning Griffiths, A. J., & Walther, T. (2010). Quantification of carbon contamination under electron beam irradiation in a scanning transmission electron microscope and its suppression by plasma cleaning. Journal of Physics: Conference Series.

Model 1040 NanoMill® TEM Specimen Preparation System

foreign-object damage, high-cycle fatigue, fatigue-crack growth threshold, small cracks, Ti–6Al–4V Influence of foreign-object damage on crack initiation and early crack growth during high-cycle fatigue of Ti-6Al-4V Peters, J. O., & Ritchie, R. O. (2000). Influence of foreign-object damage on crack initiation and early crack growth during high-cycle fatigue of Ti-6Al-4V. Engineering Fracture Mechanics, 67, 193-207.
FIB, TEM, low-energy argon beam, semiconductor Post-FIB TEM sample preparation using a low energy argon beam  Genç, A., Basile, D. P., Viswanathan, G. B., Fraser, H. L., & Fischione, P. E. (2007). Post-FIB TEM sample preparation using a low energy argon beam. Microscopy and Microanalysis, 13, 1520-1521.
aberration correction, STEM, APT, order-disorder interfaces Atomic scale structure and chemical composition across order-disorder interfaces
Srinivasan, R., Banerjee, R., Hwang, J. Y., Viswanathan, G. B., Tiley, J., Dimiduk, D. M., & Fraser, H. L. (2009). Atomic scale structure and chemical composition across order-disorder interfaces. Physical Review Letters, 102(8), 086101 (1-4).
TEM, STEM, FIB, aberration correction Raising the standard of specimen preparation for aberration-corrected TEM and STEM Cerchiara, R. R., Fischione, P. E., Liu, J., Matesa, J. M., Robins, A. C., Fraser, H. L., & Genç, A. (2011). Raising the standard of specimen preparation for aberration-corrected TEM and STEM. Microscopy Today, 19(1), 16-19.
argon ion milling, ultrathin specimen Ultrathin specimen preparation by a low-energy Ar-ion milling method Mitome, M. (2012). Ultrathin specimen preparation by a low-energy Ar-ion milling method. Microscopy, 62(2), 321-326.
TEM, FIB, damaging, lamella, front view Sample preparation by focused ion beam micromachining for transmission electron microscopy imaging in front-view Jublot, M., & Texier, M. (2013). Sample preparation by focused ion beam micromachining for transmission electron microscopy imaging in front-view. Micron, 56, 63-67.
abberation correction TEM, boron carbide Atomic structure of amorphous shear bands in boron carbide Reddy, K. M., Liu, P., Hirata, A., Fujita, T., & Chen, M. W. (2013). Atomic structure of amorphous shear bands in boron carbide. Nature Communications, 4.
FIB, TEM specimen preparation, sample thickness, backscattered electrons, EDX, Monte Carlo simulations, sub-kV argon milling Practical aspects of the use of the X2 holder for HRTEM-quality TEM sample preparation by FIB Van Mierlo, W., Geiger, D., Robins, A., Stumpf, M., Ray, M. L., Fischione, P., & Kaiser, Y. (2014). Practical aspects of the use of the X2 holder for HRTEM-quality TEM sample preparation by FIB. Ultramicroscopy, 147, 149-155. 
Superalloys, nanotwinning, phase transformation Phase transformation strengthening of high-temperature superalloys Smith, T. M., Esser, B. D., Antolin, N., Carlsson, A., Williams, R. E., Wessman, A., Hanlon, T., Fraser, H.L., Windl, W., McComb, D.W., & Mills, M.J. (2016). Phase transformation strengthening of high-temperature superalloys. Nature Communications, 7, 13434. 

Model 1070 NanoClean

plasma cleaning, EELS, EDS Plasma cleaning and its applications for electron microscopy Isabell, T. C., Fischione, P. E., O'Keefe, C., Guruz, M. U., & Dravid, V. P. (1999). Plasma cleaning and Its applications for electron microscopy. Microscopy and Microanalysis, 5(2), 126-135.
plasma cleaning, carbonaceous contamination, shield, TEM, carbon hydroxide, holey carbon films, EELS, HREM Plasma cleaning of carbonaceous samples using a shield Willems, B., Hamon, A., Schryvers, D., Robins, A., Matesa, J., & Fischione, P. (2003). Plasma cleaning of carbonaceous samples using a shield. Microscopy and Microanalysis, 9, 164-165.
semiconductor, plasma cleaning, carbonaceous contamination, TEM, SEM, SEM holders Applications of plasma cleaning for electron microscopy of semiconducting materials Isabell, T. C., & Fischione, P. E. (1998). Applications of Plasma Cleaning for Electron Microscopy of Semiconducting Materials. MRS Proceedings.
plasma cleaning, cryo-EM, blotting, TEM, holey carbon films Improving automation for cryo-EM specimen preparation Quispe, J., Banez, R., Carragher, B., & Potter, C. S. (2004). Improving Automation for Cryo-EM Specimen Preparation. Microscopy and Microanalysis.
cryo, protein, hydrogen plasma Controlling protein adsorption on graphene for cryo-EM using low energy hydrogen plasmas Russo, C. J., & Passmore, L. A. (2014). Controlling protein adsorption on graphene for cryo-EM using lowenergy hydrogen plasmas. Nature Methods, 11, 649–652.

Model 2040 Dual-Axis Tomography Holder

TEM, tomography, tilt series The transformation of enterovirus replication structures: a three-dimensional study of single- and double-membrane compartments Limpens, R. W., Schaar, H. M., Kumar, D., Koster, A. J., Snijder, E. J., Kuppeveld, F. J., & Barcena, M. (2011). The transformation of enterovirus replication structures: a three-dimensional study of single- and double-membrane compartments. Mbio, 2(5).
HIV-1, tomography, tilt series Electron tomography of HIV-1 infection in gut-associated lymphoid tissue Ladinsky, M., Kieffer, C., Olson, G., Deruax, M., Vrbanac, V., Tager, A., Kwon, D., Bjorkman, P. (2014). Electron Tomography of HIV-1 Infection in Gut- Associated Lymphoid Tissue. PLoS Pathogens, 10(1).

Model 2050 On-Axis Rotation Tomography Holder

spectral imaging, 3D, chemical imaging, EDS, tomography Computed tomographic spectral imaging: 3D STEM-EDS spectral imaging Kotula, P. G., Brewer, L. N., Michael, J. R., & Giannuzzi, L. A. (2007). Computed tomographic spectral imaging: 3D STEM-EDS spectral imaging. Microscopy and Microanalysis, 13, 1324-1325.
porous materials, electron tomography, discrete tomography, quantitative, thin films Measuring porosity at the nanoscale by quantitative electron tomography Biermans, E., Molina, L., Batenburg, K. J., Bals, S., & Tendeloo, G. V. (2010). Measuring porosity at the nanoscale by quantitative electron tomography. Nano Letters, 10, 5014-5019.
electron tomography, carbon nanotubes, missing wedge, FIB, TEM, patterned nanostructures, 3D Three-dimensional analysis of carbon nanotube networks in interconnects by electron tomography without missing wedge artifacts Ke, X., Bals, S., Cott, D., Hantschel, T., Bender, H., & Van Tendeloo, G. (2010). Three-dimensional analysis of carbon nanotube networks in interconnects by electron tomography without missing wedge artifacts. Microscopy and Microanalysis, 16, 210-217.
coated conductors, thin films, HAADF-STEM, EELS, tomography Barrier efficiency of sponge-like La2Zr2O7 buffer layers for YBCO-coated conductors Molina, L., Tan, H., Biermans, E., Batenburg, K. J., Verbeeck, J., Bals, S., & Tendeloo, G. V. (2011). Barrier efficiency of sponge-like La2Zr2O7 buffer layers for YBCO-coated conductors. Superconductor Science & Technology, 24(6), 065019-065019.

Model 3000 Annular Dark Field Detector

dual axis electron tomography, Z-contrast imaging, 3D Reducing the missing wedge: high-resolution dual axis tomography of inorganic materials Arslan, I., Tong, J. R., & Midgley, P. A. (2006). Reducing the missing wedge: high-resolution dual axis tomography of inorganic materials. Ultramicroscopy, 106, 994–1000.

NanoMill is a registered trademark of E.A. Fischione Instruments, Inc.