We use cookies

By continuing to browse the site, you are agreeing to our use of cookies.

OK Find out more

Model 110

Automatic Twin-Jet Electropolisher

The Automatic Twin-Jet Electropolisher is used for the electrolytic thinning of TEM specimens. The twin-jet technique simultaneously polishes both sides of the specimen, creating electron transparency within a few minutes. Electrolyte flow and polishing voltage are controlled by either the Model 120 Automatic Power Control or the Model 140 Digital Power Control. Use the Model 220 Low Temp Container for applications at cryogenic temperatures.
Automatic Twin-Jet Electropolisher

High-quality thin foils for TEM

Electrolytic thinning of conductive materials is an effective method of quickly producing specimens for transmission electron microscopy (TEM) without any induced artifacts. In the Model 110 Twin-Jet Electropolisher, twin jets simultaneously polish both sides of the sample, creating electron transparent specimens within a few minutes. The electropolisher features easily adjustable electrolyte flow, polishing voltage, termination detection sensitivity, and jet and specimen holder positions. 

Integrated operation 

The electropolisher consists of the electrolyte pump and motor, jet assemblies, specimen holder, fiber optic assemblies (including the light source and photocell detector), and a box that holds a glass dish for the electrolyte.  

Select one of the following power controls to operate the Model 110 Automatic Twin-Jet Electropolisher:

Optional accessories

Fischione recommends the following Fischione products that complement the Model 110 Automatic Twin-Jet Electropolisher.

DANGER. Many of the chemicals used in the solutions below are corrosive, flammable, explosive, and/or toxic — either as stand-alone chemicals or in mixtures. Users are cautioned to review applicable Safety Data Sheet (SDS) prior to using these chemicals, to strictly follow hazard controls identified in the SDS, and to always use chemicals consistent with manufacturer’s recommendations and applicable regulatory requirements. E.A. Fischione Instruments, Inc. assumes no responsibility for property damage or injury associated with the use of these chemicals or mixtures. 
 
Material Composition Solution Conditions Comment
Ag Pure Sulfuric 6%; Acetic 6%; Methanol 88%; Thiourea Cyanide Solution 12 g  25 C, 10 V, 18 mA  Slightly etched.
Al Alloy 1100 Perchloric 93%; Sulfuric 6%; Hydrofluoric 1% -25 °C, 15 V Must keep below -25 °C 
Al  Alloy 1100    Nitric 10%; Methanol 90%  -10 °C, 10 V, 200 mA   
Al  Alloy 2024  Nitric 10%; Methanol 90% -10 °C, 10 V, 200 mA   

Al 
 
Alloy 5052 Nitric 10%; Methanol 90%  -10 °C, 10 V, 200 mA   
Al  Alloy 6061  Nitric 10%; Methanol 90%  -10 °C, 10 V, 200 mA   
Al  Powder  Perchloric 5%; Butoxyethanol 15%; Methanol 80%  8 °C, 30 V, 50 mA   
Al  Pure  Perchloric 10%; Ethanol 90%  0 °C, 7 V, 80 mA  Excellent result, retains precipitates. 
Al   Nitric 20 to 25%; Methanol 75 to 80%    Add liquid Nitrogen to electrolyte until ice forms. Begin polishing as soon as it liquefies.
Al Ag 
Ag 5 to 25% 
Nitric 33%; Methanol 67%  -30 °C, 8 V, 40 mA  
Al Be  As cast 50%  Nitric 10%; Methanol 90%  -15 °C, 10 V, 200 mA  
Al Be  As cast 90% Perchloric 5%; Butoxyethanol 20%; Methanol 75%  8 °C, 35 V 
 
 
Al Be Be 0.5 to 30%  Perchloric 5%; Butoxyethanol 20%; Methanol 75% 
 
8 °C, 17 V, 100 mA  For higher Be concentrations, use higher voltage. 
 
Al Be Ti Be 1 to 30%, Ti 1 to 10% Perchloric 5%; Butoxyethanol 20%; Methanol 75% 
 
8 °C, 20 V, 80 mA   
Al Be Ti  Be 7%, Ti 2% Perchloric 5%; Butoxyethanol 20%; Methanol 75% 
 
8 °C, 50 V, 80 mA 
 
 
Al Cu  Cu 4%  Nitric 33%; Methanol 67%  -30 °C, 9 V, 10 mA Very good result. 
 
Al Cu Cu 4%  Sulfuric 20%; Methanol 80%  5 °C, 40 V, 50 mA  Excellent result. 
Al Cu    Nitric 33%; Methanol 67%
-30 to -50 °C 
 
Al Cu Ti Alloy 2000 series  Nitric 25%; Methanol 75%; Hydrofluoric (1-5 drops) -20 °C If oxide film is present, remove it by dipping specimen in solution of 16 g Chromic Acid, 35 cc Phosphoric Acid, 65 cc Distilled H20 for 5 to 10 minutes at room temperature. 
 
Al Cu Ti 
Alloy 2219
Perchloric 20%; Ethanol 80%  -30 °C, 35 V, 100 mA  Fast electrolyte flow needed. Sample must be removed from holder as quickly as possible and rinsed in three beakers of ethanol to prevent oxide film. 
 
Al Cu Ti  Alloy 2219  Perchloric 20%; Ethanol 80%  -30 °C, 35 V, 100 mA  Fast electrolyte flow needed. Sample must be removed from holder as quickly as possible and rinsed in three beakers of ethanol to prevent oxide film. 
Al Ge   Perchloric 10%; Glycerol 20%; Methanol 70% 
 
-10 °C, 18 V, 60 mA   
Al Li  Li 2 to 3%  Perchloric 5%; Butoxyethanol 20%; Methanol 75% 
 
8 °C, 15 V, 40 mA   
Al Mg 
Mg 3% 
 
Perchloric 10%; Butoxyethanol 20%; Methanol 70%     
Al Mn 
 
Mn 3 to 25%  Perchloric 5%; Butoxyethanol 20%; Methanol 75% 
 
8 °C, 25 V, 125 mA  Very brittle, good polish.
Al Mn S  Mn 33%, S 3%  Perchloric 5%; Butoxyethanol 20%; Methanol 75% 
 
8 °C, 25 V, 125 mA  Very brittle, good polish. 
Al Ni  Ni 20 to 80%  Perchloric 5%; Butoxyethanol 20%; Methanol 75%  
 
5 °C, 37 V, 50 mA Very good, small change in voltage with composition. 
 

Al Si 

Si 0.2%
Nitric 33%; Methanol 67%  -22 °C, 12.5 V, 30 mA 
 
 
Al Si  Si 6%  Nitric 33%; Methanol 67%  -5 °C, 20 V, 200 mA  
Al Ti Ti 50% Perchloric 5%; Butoxyethanol 15%; Methanol 80% 
 
0 °C, 25 V, 40 mA  Very good.
Au Fe Fe 25% Hydrochloric 6%; Sulfuric 6%; H20 88% 
 
25 °C, 10 V, 60 mA 
 
 
Be  Pure  Perchloric 5%; Butoxyethanol 15%; Methanol 80% 
 
0 °C, 30 V, 40 mA  Slight etch with respect to orientation. 
 
Be Ti 
Ti 12% 
 
Sulfuric 20%; Methanol 80% -10 °C, 25 V, 60 mA  
Be Ti  Ti 2%  Perchloric 5%; Butoxyethanol 15%; Methanol 80% 
 
0 °C, 55 V 40 mA   
Be V V 50%  Perchloric 5%; Butoxyethanol 15%; Methanol 80% 
 
0 °C, 55 V, 40 mA  
Bi²Te³ 
 
  Tartaric 2%; Sodium Hydroxide 9%; H2O 89% 
 
   
Cd    Nitric 33%; Methanol 67%  -30 °C, 7 V, 180 mA   
Co   Various alloys  Perchloric 20%; Acetic 80%   
Co Fe Fe 5 to 8%  Perchloric 25%; Acetic 75% 25 °C, 20 V, 80 mA   
Co Ni    Perchloric 25%; Acetic 75%  -30 °C, 25 V   
Co Ni    Perchloric 10%; Acetic 90%  80 V  
Cu  Pure  Nitric 10%; Methanol 90%  -18 °C, 20 V, 40 mA   
Cu 
 
Various alloys Phosphoric 30%; H2O 70%  Increase voltage until bubbles form on specimen surface, then reduce voltage until bubbles just disappear.  
Cu   Nitric 33%; Methanol 67% 
 
-30 to -50 °C 
 
 
Cu Au Au 50%  Nitric 30%; Methanol 70%  -25 °C, 20 V 
 
 
Cu Be  Be 10%  Nitric 10%; Methanol 90%  -15 °C, 55 V, 80 mA   
Cu Be    Nitric 33%; Methanol 67%  -30 to -50 °C   
Cu Be Co  Nitric 33%; Methanol 67%  -50 °C, 65 mA  Fast electrolyte flow needed. Rinse in methanol. Surface may oxidize rapidly.  
Cu Cr  Cr 3.8%  Nitric 10%; Methanol 90% 0 °C, 35 V, >100 mA Good result, slight etching at the grain boundaries. 
 
Cu CuO  CuO <5% Nitric 33%; Methanol 67%  -35 °C, < 8 V, 200 mA  
Cu Fe Fe 30%  Perchloric 5%; Butoxyethanol 15%; Methanol 80% 
 
-20 °C, 25 V  
Cu Ni Sn  Single Crystal Nitric 10%; Methanol 90%  -10 °C, 20 V, 45 mA   
Cu Ni Sn  Spinodal Nitric 33%; Methanol 67%  -30 °C, 20 V, 80 mA 
 
 
Cu Pd  Pd 30 to 50% Perchloric 5%; Butoxyethanol 35%; Methanol 60% 
 
0 °C, 40 V, 200 mA  
Cu Si    Nitric 33%; Methanol 67%  -50 °C, 65 mA  Fast electrolyte flow needed. Rinse in methanol. Surface may oxidize rapidly.
Cu Ti  Ti 1.6%  Nitric 15%; Methanol 85% 
 
   
Cu Ti   Nitric 33%; Methanol 67%  -30 to -50° C 
 
 
Discaloy  Gamma  Perchloric 20%; Acetic 80%  25 °C, 5 V, 30 to 45 mA  Use low electrolyte flow. 
 
Discaloy    Perchloric 20%; Methanol 80%  -30 °C, 5 V, 30 to 45 mA Use low electrolyte flow.
Fe  Pure  Perchloric 10%; Acetic 90%  15 °C, 30 V, 30 mA   
Fe Various alloys Perchloric 10%; Acetic 90%     
Fe    Chromic 50%; Acetic 50%  27 V   
Fe AI C   Perchloric 5%; Butoxyethanol 35%; Methanol 60% 
 
-20 °C, 15 V   
Fe AI O Al <1%; O <1%  Perchloric 10%; Acetic 90%  20 °C, 35 to 40 V, 30 mA  Good result. 
Fe Al   Nitric 33%; Methanol 67%  -30 to -50 °C   
Fe Be  Be 25% Perchloric 5%; Butoxyethanol 35%; Methanol 60% 
 
10 °C, 15 V   
Fe C 
 
C <1%  Nitric 33%; Methanol 67%  -10 °C, 10 V 
 
 
Fe Cr  Cr 40%  Perchloric 5%; Butoxyethanol 15%; Methanol 80% 
 
0 °C, 30 V, 65 mA   
Fe Cr  Cr 46%  Perchloric 10%; Acetic 90%  0 °C, 30 V   
Fe Cu  Cu 0.3%  Perchloric 33%; Acetic 33%; Butoxyethanol 34% 
 
10 °C, 20 to 30 V, 200 mA 
 
 
Fe MnS   MnS 2 to 5%  Perchloric 5%; Butoxyethanol 15%; Methanol 80% 
 
15 °C, 25 V, 80 mA  Slightly etched.
Fe Ni Ni 35%  Perchloric 10%; Methanol 90%     
Fe Pd  Pd 15 to 70% Perchloric 5%; Butoxyethanol 15%; Methanol 80% 
 
5 °C, 30 V, 15 mA 
 
 
Fe Si Si 3% Nitric 80%; Methanol 20%  35 °C, 20 V, 50 to 60 mA  Large thin areas. Sample must be removed from holder as quickly as possible and rinsed in three beakers of ethanol to prevent oxide film. 
 
Fe Si Si 3%  Sulfuric 80%; Methanol 20% -35 °C, 20 V, 50 to 60 mA  Large thin areas. Sample must be removed from holder as quickly as possible and rinsed in three beakers of ethanol to prevent oxide film.
Fe Si O Si <1%; O <1% Perchloric 10%; Acetic 90% 
 
20 °C, 35-40 V, 30 mA  Good result. 
FV 535    Perchloric 20%; Methanol 80%  -20 °C, 30 mA  Use low to moderate electrolyte flow. 
 
Glass   Hydrofluoric 90%; Hydrochloric 10%    Chemical polish only. 
Inconel  Alloy 600  Perchloric 20%; Methanol 80% -40 °C, 15 to 20 V, 80 to 90 mA  Use low to moderate electrolyte flow.
Inconel Alloy 690 Perchloric 20%; Methanol 80%  -40 °C, 40 V, 150 mA  Fast electrolyte flow needed.
Inconel Alloy 706 (cold worked)  Perchloric 20%; Methanol 80%  -40 °C, 150 V, 90 to 100 mA  Fast electrolyte flow needed. 
Mar M 509 
 
  Nitric 4%; Isobutanol 48%; Methanol 48%; Zinc Chloride 40 g -40 °C, 150 V, 25 to 60 mA  Fast electrolyte flow needed. 
 
Mg    Nitric 10%; Methanol 90% 20 V 
 
 
Mo    Sulfuric 13%; Methanol 87%  -40 °C, 80 to 100 mA   
Mo   Sulfuric 80%; Hydrofluoric 20%     
Mo C  C <1% Sulfuric 5%; Glycerol 30%; Methanol 65% 
 
-30 °C, 35 V, 65 mA   
Mo Hf N    Sulfuric 20%; Methanol 80%  25 °C, 17 V, 95 mA 
Dip in phosphoric after polishing. 
 
Mo Hf N    Perchloric 5%, Butoxyethanol 15%; Methanol 80% 
 
0 °C, 105 V, 90 mA  Slightly etched.
Mo Hf N   Sulfuric 20%; Methanol 80% 25 °C, 70 V, >100 mA  Good result, Fast electrolyte flow needed. 

 
Monel   Nitric 37%; Methanol 63% 
-40 °C, 40 to 50 V, 60 mA 
 
Fast electrolyte flow needed.
Nb  Pure  Hydrofluoric 1%; Sulfuric 6%; Methanol 93% 
 
-40 °C, 40 V, 40 mA  Slightly etched. 
Nb  Various alloys  Hydrofluoric 1%; Sulfuric 2%; Methanol 97% 
 
   
Nb   Saturated Solution of Ammonium Fluoride in Methanol 13%; Methanol 87%  -30 °C, 150 V  Thins at a rate of 5 µm/min. Maintaining temperature is critical. 
Ni  Pure  Perchloric 20%; Acetic 80% 
0 °C, 35 V, 50 mA
Excellent result. 
Ni Al  Al 50%  Perchloric 3%; Butoxyethanol 32%; Methanol 65% 
 
-45 °C, 18 V, 70 mA   
Ni Al    Perchloric 10%; Methanol 90%     
Ni Cr  Cr 33%  Perchloric 10%; Acetic 90% 
 
10 °C, 55 V, 65 mA 
 
 
Ni Mo   Nitric 33%; Methanol 67%  -30 °C to -50 °C   
Ni Nb  Nb 40% Perchloric 10%; Ethanol 90%  8 °C, 35 to 40 V   
Ni V  V 2%  Perchloric 10%; Acetic 90%  10 °C, 55 V, 60 mA   
Pd  Pure  Perchloric 16%; Acetic 42%; Butoxyethanol 42% 
 
-10 °C, 25 to 30 V  Deforms easily. 
Pd Ni Ni 20 to 50% Perchloric 16%; Acetic 42%; Butoxyethanol 42% 
 
-10 °C, 25 to 30 V 
 
 
Pt  Pure  Saturated Solution of Calcium Chloride in H2O 
 
25 °C, 35 V   
Pt C C <1%  Saturated Solution of Calcium Chloride in H2O  25 °C, 20 V   
Pt Ga Ga 4%  Saturated Solution of Calcium Chloride in H2O 
 
25 °C, 20 V   
Si    Hydrofluoric 91%; H2O 9%; Potassium Permanganate 10.5 g  -25 °C Fast electrolyte flow needed. 
Si Cu  Alloy 2124  Nitric 25%; Methanol 75% 
 
-30 °C 
 
 
Stainless Steel  Alloy 302  Perchloric 10%; Ethanol 90% -25 °C, 25 V, 10 mA   
Stainless Steel  Alloy 303  Perchloric 5%; Acetic 95%  15 °C, 30 V, 80 mA   

Stainless Steel 
Alloy 304  Perchloric 20%; Acetic 80%  25 °C, 10 to 15 V, 60 to 90 mA  Use low electrolyte flow. 
 

Stainless Steel
Alloy 308  Perchloric 20%; Acetic 80% 25 °C, 10 to 15 V, 60 to 90 mA Use low electrolyte flow. 
 
Stainless Steel  Alloy 310  Perchloric 5%; Acetic 95% 
 
25 °C, 35 V, 80 mA  

Stainless Steel 
Alloy 420 Sulfuric 40%; Phosphoric 60%  60 °C, 10 V   
Stainless Steel Alloy 420 Perchloric 15%; Ethanol 85% 
25 °C, 18 V 
 
Stainless Steel    Sulfuric 40%; Phosphoric 60% 
 
   
Steel  Low Carbon  Glacial Acetic 500 mL; Anhydrous Sodium Chromate 100 g     
Ta Pure Hydrofluoric 3%; Sulfuric 10%; Methanol 87% 
 
-25 °C, 35 V, 80 mA  Slightly etched. 
Ta lr  Ta 50% Saturated Solution of Calcium Chloride in H2O  25 °C, 20 V, 200 mA  Good result. 
 
Ti  Various alloys  Perchloric 6%; Butoxyethanol 35%; Methanol 59% 
 
-30 °C   
Ti   Perchloric 6%; Butoxyethanol 35%; Methanol 59% 

 
   
Ti    Sulfuric 3%; Hydrochloric 3%; Methanol 94% 
 
-30 °C   
Ti Al   
Perchloric 5%, Butoxyethanol 15%; Methanol 80% 
 
5 °C, 35 V, 30 mA  Slightly etched at grain boundaries 
Ti Al    Perchloric 20%; Methanol 80%  -30 °C, 55 V, 35 to 45 mA  Fast electrolyte flow needed. 
Ti Al    Sulfuric 5%; Methanol 95%  -30 °C, 55 V, 35 to 45 mA  Fast electrolyte flow needed. 
 
Ti Al Be    Perchloric 5%, Butoxyethanol 15%; Methanol 80% 
 
0 °C, 30 V, 30 mA 
 
 
Ti Al Nb   Hydrofluoric 1%; Sulfuric 5%; Methanol 94% 
 
   
Ti Al Si  As cast  Sulfuric 20%; Methanol 80%  5 °C, 50 V, 80 mA  Very good result 
Ti Al V  Al 6%; V 4%  Perchloric 6%; Butoxyethanol 34%; Methanol 60% 
 
-30 °C, 35 V, 9 mA  Fast electrolyte flow needed.
Ti B  B 7%  Perchloric 20%; Methanol 80%  -20 °C, 11 V, 170 mA  The colder, the better. 
Ti Be  Be 12% Perchloric 5%; Butoxyethanol 15%; Methanol 80% 
 
5 °C, 20 V, 40 mA  Good result.
Ti Be Be 35%  Perchloric 5%; Butoxyethanol 15%; Methanol 80% 
 
-10 °C, 15 V, 30 mA   
Ti C  C 1.5% Perchloric 5%; Butoxyethanol 15%; Methanol 80% 
 
25 °C, 11 V, 150 mA 
 
 
Ti Fe  Fe 25 to 30%  Perchloric 8%; Butoxyethanol 10%; Methanol 70%; H2O 12%  10 °C, 12 V, 120 mA   
Ti Ge    Hydrochloric 3%; Sulfuric 3%; Methanol 94% 
 
-30 °C 
 
 
Ti Mo  Mo 10% Sulfuric 10%; Methanol 90%  -18 °C, 32 V, 90 mA   
Ti Nb Mo   Sulfuric 10%; Methanol 90%  10 °C, 10 V, 500 mA 
 
 
Ti Ni Fe Si  Fe 1%  Sulfuric 10%; Methanol 90%  -15 °C, 10 V   
Ti Ni Fe Ti 50%  Sulfuric 10%; Hydrofluoric 5%; Methanol 85% 
 
20 to 25 V  Slightly etched. 
 
Ti V  V 10%  Sulfuric 10%; Methanol 90%  -18 °C, 33 V, 8 0 mA   
Ti V Be  Be 10%; V 40%  Perchloric 5%; Butoxyethanol 15%; Methanol 80% 
 

-10 °C, 70 to 85 V, 50 mA 
 
U Pure Sulfuric 20%; Methanol 80%  0 °C, 45 V   
Udimet Alloys 710 to 720  Perchloric 20%; Methanol 80% -20 °C, 45 to 55 V, 55 to 65 mA  Use moderate electrolyte flow. 
V Be 
 
Be 50%  Perchloric 5%; Butoxyethanol 15%; Methanol 80% 
 
0 °C, 55 V, 40 mA 
 
 
W   Sodium Hydroxide 2%; H2O 98% 
 
  Use low electrolyte flow. 
X-45    Nitric 4%; Isobutanol 48%; Methanol 48%; Zinc Chloride 40 g -40 °C, 150 V, 25 to 35 mA  Fast electrolyte flow needed. It takes 12 minutes to thin a 50 µm thick disk. 
X-750   Perchloric 20%; Methanol 80% 
-30 °C, 100 mA 
Fast electrolyte flow needed. 
Zr    Perchloric 20%; Methanol 80% -40 °C, 35 to 45 mA Use moderate electrolyte flow. 
Zr    Perchloric 20%; Acetic 80%  25 °C, 35 to 45 mA Use moderate electrolyte flow.
Zr   Perchloric 20%; Acetic 80% 
 
   
Zr Be  Be 5% Perchloric 5%; Butoxyethanol 15%; Methanol 80% 
 
5 °C, 30 V, 60 mA 
 
 
Zr Co Ni  Co 40%; Ni 10%  Perchloric 5%; Butoxyethanol 15%; Methanol 80% 
 
-10 °C, 35 V, 25 mA 
 
 
Zr Nb  Nb 80% Sulfuric 10%; Methanol 90%  -5 °C, 25 V, 85 mA 
 
Slightly etched. 
Zr Nb  Zr 50%; Nb 50%  Sulfuric 10%; Methanol 90%  -10 °C, 22 V, 90 mA  Good result. 

Additional resources

For additional recipes, refer to:

Petzow, G. Metallographic etching: Techniques for metallotraphy, ceramography, plastography. Materials Park, OH: ASM International, 1999. Print.

Vander, Voort G. F. Metallography, Principles and Practice. Materials Park: ASM International, 1999. Print.

The role of TEM specimen preparation in understanding aluminum alloy precipitation hardening mechanism

Precipitation hardening is a process for improving the mechanical properties of aluminum alloys. Targeting a region of interest using the NanoMill system resulted in TEM specimens of high-quality and thickness that were suitable for high resolution TEM and aberration-corrected STEM imaging and analysis.

3D analysis of creep voids in hydrogen reformer tubes

An ex-service hydrogen reformer tube composed of Fe-0.45% C-25% Cr-35% Ni-1.0% Si-1.5% Nb-1.0% Mn (approximate wt.%) was examined via serial sectioning and 3D reconstruction to characterize creep voids in terms of their size, location, and surrounding precipitates. In addition, electron backscatter diffraction...

Morphological evolution of GP zones and nanometer-sized precipitates in the AA2050 aluminum alloy

Cs-corrected high-angle-annular-dark-field scanning-transmission-electron microscopy (Cs-corrected HAADF-STEM) was employed to examine the phases in Al-Cu-Li alloy (AA2050)...

Want to learn more?

Fill out the contact form below and we will get in touch to discuss your sample preparation needs.